Associations of cholinergic system integrity with cognitive decline in GBA1 and LRRK2 mutation carriers

Author:

Schumacher JuliaORCID,Ray Nicola,Teipel Stefan,Storch AlexanderORCID

Abstract

AbstractIn Parkinson’s disease (PD), GBA1- and LRRK2-mutations are associated with different clinical phenotypes which might be related to differential involvement of the cholinergic system. We investigated cholinergic integrity in 149 asymptomatic GBA1 and 169 asymptomatic LRRK2 mutation carriers, 112 LRRK2 and 60 GBA1 carriers with PD, 492 idiopathic PD, and 180 controls from the PPMI cohort. Basal forebrain volumes were extracted and white matter pathways from nucleus basalis of Meynert (NBM) to cortex and from pedunculopontine nucleus (PPN) to thalamus were assessed with a free water-corrected DTI model. Bayesian ANCOVAs were conducted for group comparisons and Bayesian linear mixed models to assess associations with cognitive decline. Basal forebrain volumes were increased in asymptomatic GBA1 (Bayes Factor against the null hypothesis (BF10) = 75.2) and asymptomatic LRRK2 (BF10 = 57.0) compared to controls. Basal forebrain volumes were increased in LRRK2- compared to GBA1-PD (BF10 = 14.5) and idiopathic PD (BF10 = 3.6*107), with no difference between idiopathic PD and PD-GBA1 (BF10 = 0.25). Mean diffusivity along the medial NBM pathway was decreased in asymptomatic GBA1 compared to controls (BF10 = 30.3). Over 5 years, idiopathic PD and PD-GBA1 declined across all cognitive domains whereas PD-LRRK2 patients only declined in processing speed. We found an interaction between basal forebrain volume and time in predicting multiple cognitive domains in idiopathic PD and PD-GBA1, but not in PD-LRRK2. While LRRK2 and GBA1 mutations are both associated with increased basal forebrain volume at asymptomatic stages, this increase persists at the symptomatic PD stage only in LRRK2 and might be related to slower cognitive decline in these patients.

Funder

Michael J. Fox Foundation for Parkinson’s Research

AbbVie

Allergan

Celgene

Eli Lilly and Company

GE | GE Healthcare

GlaxoSmithKline

Janssen Pharmaceuticals

Lundbeckfonden

Meso Scale Diagnostics

Pfizer

Servier

Takeda Pharmaceutical Company

UCB

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3