Lysosomal genes contribute to Parkinson’s disease near agriculture with high intensity pesticide use

Author:

Ngo Kathie J.ORCID,Paul Kimberly C.,Wong Darice,Kusters Cynthia D. J.,Bronstein Jeff M.,Ritz BeateORCID,Fogel Brent L.ORCID

Abstract

AbstractParkinson’s disease (PD), the second most common neurodegenerative disorder, develops sporadically, likely through a combination of polygenic and environmental factors. Previous studies associate pesticide exposure and genes involved in lysosomal function with PD risk. We evaluated the frequency of variants in lysosomal function genes among patients from the Parkinson’s, Environment, and Genes (PEG) study with ambient pesticide exposure from agricultural sources. 757 PD patients, primarily of White European/non-Hispanic ancestry (75%), were screened for variants in 85 genes using a custom amplicon panel. Variant enrichment was calculated against the Genome Aggregation Database (gnomAD). Enriched exonic variants were prioritized by exposure to a cluster of pesticides used on cotton and severity of disease progression in a subset of 386 patients subdivided by race/ethnicity. Gene enrichment analysis identified 36 variants in 26 genes in PEG PD patients. Twelve of the identified genes (12/26, 46%) had multiple enriched variants and/or a single enriched variant present in multiple individuals, representing 61% (22/36) of the observed variation in the cohort. The majority of enriched variants (26/36, 72%) were found in genes contributing to lysosomal function, particularly autophagy, and were bioinformatically deemed functionally deleterious (31/36, 86%). We conclude that, in this study, variants in genes associated with lysosomal function, notably autophagy, were enriched in PD patients exposed to agricultural pesticides suggesting that altered lysosomal function may generate an underlying susceptibility for developing PD with pesticide exposure. Further study of gene-environment interactions targeting lysosomal function may improve understanding of PD risk in individuals exposed to pesticides.

Funder

Donors to the University of California

U.S. Department of Health & Human Services | NIH | National Institute on Aging

U.S. Department of Health & Human Services | NIH | National Institute of Environmental Health Sciences

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3