Central retinal microvasculature damage is associated with orthostatic hypotension in Parkinson’s disease

Author:

Ahn Jong HyeonORCID,Kang Min ChaeORCID,Lee DongyoungORCID,Cho Jin WhanORCID,Park Kyung-Ah,Youn JinyoungORCID

Abstract

AbstractOrthostatic hypotension (OH) is a common non-motor symptom in Parkinson’s disease (PD). OH can cause cerebral and retinal hypoperfusion and is associated with microvascular damage in PD. Optical coherence tomography angiography (OCTA) is a non-invasive technology that can be used to visualize the retinal microvasculature and detect microvascular damage in PD. In the present study, 51 PD patients (OH+, n = 20, 37 eyes; OH−, n = 32, 61 eyes) and 51 healthy controls (100 eyes) were evaluated. The Unified Parkinson’s Disease Rating Scale III, Hoehn and Yahr scale, Montreal Cognitive Assessment, levodopa equivalent daily dose, and vascular risk factors, including hypertension, diabetes, and dyslipidemia, were investigated. PD patients underwent a head-up tilt (HUT) test. The PD patients had a lower superficial retinal capillary plexus (SRCP) density in the central region than control patients. The PDOH+ group had lower vessel density in the SRCP of the central region compared with the control group and lower vessel density in the DRCP of the central region than the PDOH− and control groups. The changes in systolic and diastolic blood pressure during the HUT test in PD patients showed a negative correlation with the vessel density in the DRCP central region. The presence of OH was a critical factor associated with central microvasculature damage in PD. These findings indicate that OCTA can be a useful and non-invasive tool for detecting microvasculature damage in PD patients.

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Neurology (clinical),Neurology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3