A non-invasive olfactory bulb measure dissociates Parkinson’s patients from healthy controls and discloses disease duration

Author:

Iravani BehzadORCID,Arshamian Artin,Schaefer MartinORCID,Svenningsson PerORCID,Lundström Johan N.ORCID

Abstract

AbstractOlfactory dysfunction is a prevalent non-motor symptom of Parkinson’s disease (PD). This dysfunction is a result of neurodegeneration within the olfactory bulb (OB), the first processing area of the central olfactory system, and commonly precedes the characteristic motor symptoms in PD by several years. Functional measurements of the OB could therefore potentially be used as an early biomarker for PD. Here, we used a non-invasive method, so-called electrobulbogram (EBG), to measure OB function in PD and age-matched healthy controls to assess whether EBG measures can dissociate PDs from controls. We estimated the spectrogram of the EBG signal during exposure to odor in PD (n = 20) and age-matched controls (n = 18) as well as identified differentiating patterns of odor-related synchronization in the gamma, beta, and theta frequency bands. Moreover, we assessed if these PD-EBG components could dissociate PD from control as well as their relationship with PD characteristics. We identified six EBG components during the initial and later stages of odor processing which dissociated PD from controls with 90% sensitivity and 100% specificity with links to PD characteristics. These PD-EBG components were related to medication, disease duration, and severity, as well as clinical odor identification performance. These findings support using EBG as a tool to experimentally assess PD interventions, potentially aid diagnosis, and the potential development of EBG into an early biomarker for PD.

Funder

Vetenskapsrådet

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Clinical Neurology,Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3