Abstract
AbstractGenetic risk for complex diseases very rarely reflects only Mendelian-inherited phenotypes where single-gene mutations can be followed in families by linkage analysis. More commonly, a large set of low-penetrance, small effect-size variants combine to confer risk; they are normally revealed in genome-wide association studies (GWAS), which compare large population groups. Whereas Mendelian inheritance points toward disease mechanisms arising from the mutated genes, in the case of GWAS signals, the effector proteins and even general risk mechanism are mostly unknown. Instead, the utility of GWAS currently lies primarily in predictive and diagnostic information. Although an amazing body of GWAS-based knowledge now exists, we advocate for more funding towards the exploration of the fundamental biology in post-GWAS studies; this research will bring us closer to causality and risk gene identification. Using Parkinson’s Disease as an example, we ask, how, where, and when do risk loci contribute to disease?
Publisher
Springer Science and Business Media LLC
Subject
Cellular and Molecular Neuroscience,Clinical Neurology,Neurology
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献