Abstract
AbstractWe aimed to apply a potent deep learning network, NAFNet, to predict adverse pathology events and biochemical recurrence-free survival (bRFS) based on pre-treatment MRI imaging. 514 prostate cancer patients from six tertiary hospitals throughout China from 2017 and 2021 were included. A total of 367 patients from Fudan University Shanghai Cancer Center with whole-mount histopathology of radical prostatectomy specimens were assigned to the internal set, and cancer lesions were delineated with whole-mount pathology as the reference. The external test set included 147 patients with BCR data from five other institutes. The prediction model (NAFNet-classifier) and integrated nomogram (DL-nomogram) were constructed based on NAFNet. We then compared DL-nomogram with radiology score (PI-RADS), and clinical score (Cancer of the Prostate Risk Assessment score (CAPRA)). After training and validation in the internal set, ROC curves in the external test set showed that NAFNet-classifier alone outperformed ResNet50 in predicting adverse pathology. The DL-nomogram, including the NAFNet-classifier, clinical T stage and biopsy results, showed the highest AUC (0.915, 95% CI: 0.871–0.959) and accuracy (0.850) compared with the PI-RADS and CAPRA scores. Additionally, the DL-nomogram outperformed the CAPRA score with a higher C-index (0.732, P < 0.001) in predicting bRFS. Based on this newly-developed deep learning network, NAFNet, our DL-nomogram could accurately predict adverse pathology and poor prognosis, providing a potential AI tools in medical imaging risk stratification.
Funder
National Natural Science Foundation of China
Science and Technology Commission of Shanghai Municipality
Shanghai Municipal Health Bureau
Publisher
Springer Science and Business Media LLC