Artificial intelligence in ovarian cancer histopathology: a systematic review

Author:

Breen JackORCID,Allen Katie,Zucker KieranORCID,Adusumilli PratikORCID,Scarsbrook AndrewORCID,Hall Geoff,Orsi Nicolas M.,Ravikumar Nishant

Abstract

AbstractThis study evaluates the quality of published research using artificial intelligence (AI) for ovarian cancer diagnosis or prognosis using histopathology data. A systematic search of PubMed, Scopus, Web of Science, Cochrane CENTRAL, and WHO-ICTRP was conducted up to May 19, 2023. Inclusion criteria required that AI was used for prognostic or diagnostic inferences in human ovarian cancer histopathology images. Risk of bias was assessed using PROBAST. Information about each model was tabulated and summary statistics were reported. The study was registered on PROSPERO (CRD42022334730) and PRISMA 2020 reporting guidelines were followed. Searches identified 1573 records, of which 45 were eligible for inclusion. These studies contained 80 models of interest, including 37 diagnostic models, 22 prognostic models, and 21 other diagnostically relevant models. Common tasks included treatment response prediction (11/80), malignancy status classification (10/80), stain quantification (9/80), and histological subtyping (7/80). Models were developed using 1–1375 histopathology slides from 1–776 ovarian cancer patients. A high or unclear risk of bias was found in all studies, most frequently due to limited analysis and incomplete reporting regarding participant recruitment. Limited research has been conducted on the application of AI to histopathology images for diagnostic or prognostic purposes in ovarian cancer, and none of the models have been demonstrated to be ready for real-world implementation. Key aspects to accelerate clinical translation include transparent and comprehensive reporting of data provenance and modelling approaches, and improved quantitative evaluation using cross-validation and external validations. This work was funded by the Engineering and Physical Sciences Research Council.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3