Multi-omics analysis reveals NNMT as a master metabolic regulator of metastasis in esophageal squamous cell carcinoma

Author:

Huang Qi,Chen Haiming,Yin Dandan,Wang Jie,Wang Shaodong,Yang Feng,Li Jiawei,Mu Teng,Li Jilun,Zhao Jia,Yin RongORCID,Li Wei,Qiu MantangORCID,Zhang ErbaoORCID,Li Xiangnan

Abstract

AbstractMetabolic reprogramming has been observed in cancer metastasis, whereas metabolic changes required for malignant cells during lymph node metastasis of esophageal squamous cell carcinoma (ESCC) are still poorly understood. Here, we performed single-cell RNA sequencing (scRNA-seq) of paired ESCC tumor tissues and lymph nodes to uncover the reprogramming of tumor microenvironment (TME) and metabolic pathways. By integrating analyses of scRNA-seq data with metabolomics of ESCC tumor tissues and plasma samples, we found nicotinate and nicotinamide metabolism pathway was dysregulated in ESCC patients with lymph node metastasis (LN+), exhibiting as significantly increased 1-methylnicotinamide (MNA) in both tumors and plasma. Further data indicated high expression of N-methyltransferase (NNMT), which converts active methyl groups from the universal methyl donor, S-adenosylmethionine (SAM), to stable MNA, contributed to the increased MNA in LN+ ESCC. NNMT promotes epithelial–mesenchymal transition (EMT) and metastasis of ESCC in vitro and in vivo by inhibiting E-cadherin expression. Mechanically, high NNMT expression consumed too much active methyl group and decreased H3K4me3 modification at E-cadherin promoter and inhibited m6A modification of E-cadherin mRNA, therefore inhibiting E-cadherin expression at both transcriptional and post-transcriptional level. Finally, a detection method of lymph node metastasis was build based on the dysregulated metabolites, which showed good performance among ESCC patients. For lymph node metastasis of ESCC, this work supports NNMT is a master regulator of the cross-talk between cellular metabolism and epigenetic modifications, which may be a therapeutic target.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3