Usability of deep learning and H&E images predict disease outcome-emerging tool to optimize clinical trials

Author:

Qaiser TalhaORCID,Lee Ching-Yi,Vandenberghe Michel,Yeh Joe,Gavrielides Marios A.,Hipp Jason,Scott Marietta,Reischl Joachim

Abstract

AbstractUnderstanding factors that impact prognosis for cancer patients have high clinical relevance for treatment decisions and monitoring of the disease outcome. Advances in artificial intelligence (AI) and digital pathology offer an exciting opportunity to capitalize on the use of whole slide images (WSIs) of hematoxylin and eosin (H&E) stained tumor tissue for objective prognosis and prediction of response to targeted therapies. AI models often require hand-delineated annotations for effective training which may not be readily available for larger data sets. In this study, we investigated whether AI models can be trained without region-level annotations and solely on patient-level survival data. We present a weakly supervised survival convolutional neural network (WSS-CNN) approach equipped with a visual attention mechanism for predicting overall survival. The inclusion of visual attention provides insights into regions of the tumor microenvironment with the pathological interpretation which may improve our understanding of the disease pathomechanism. We performed this analysis on two independent, multi-center patient data sets of lung (which is publicly available data) and bladder urothelial carcinoma. We perform univariable and multivariable analysis and show that WSS-CNN features are prognostic of overall survival in both tumor indications. The presented results highlight the significance of computational pathology algorithms for predicting prognosis using H&E stained images alone and underpin the use of computational methods to improve the efficiency of clinical trial studies.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3