A deep learning model for molecular label transfer that enables cancer cell identification from histopathology images

Author:

Su Andrew,Lee HoJoonORCID,Tan XiaoORCID,Suarez Carlos J.,Andor Noemi,Nguyen QuanORCID,Ji Hanlee P.

Abstract

AbstractDeep-learning classification systems have the potential to improve cancer diagnosis. However, development of these computational approaches so far depends on prior pathological annotations and large training datasets. The manual annotation is low-resolution, time-consuming, highly variable and subject to observer variance. To address this issue, we developed a method, H&E Molecular neural network (HEMnet). HEMnet utilizes immunohistochemistry as an initial molecular label for cancer cells on a H&E image and trains a cancer classifier on the overlapping clinical histopathological images. Using this molecular transfer method, HEMnet successfully generated and labeled 21,939 tumor and 8782 normal tiles from ten whole-slide images for model training. After building the model, HEMnet accurately identified colorectal cancer regions, which achieved 0.84 and 0.73 of ROC AUC values compared to p53 staining and pathological annotations, respectively. Our validation study using histopathology images from TCGA samples accurately estimated tumor purity, which showed a significant correlation (regression coefficient of 0.8) with the estimation based on genomic sequencing data. Thus, HEMnet contributes to addressing two main challenges in cancer deep-learning analysis, namely the need to have a large number of images for training and the dependence on manual labeling by a pathologist. HEMnet also predicts cancer cells at a much higher resolution compared to manual histopathologic evaluation. Overall, our method provides a path towards a fully automated delineation of any type of tumor so long as there is a cancer-oriented molecular stain available for subsequent learning. Software, tutorials and interactive tools are available at:https://github.com/BiomedicalMachineLearning/HEMnet

Funder

Department of Health | National Health and Medical Research Council

U.S. Department of Health & Human Services | National Institutes of Health

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3