Abstract
AbstractMultiple genomic and proteomic studies have suggested that peripheral blood mononuclear cells (PBMCs) respond to tumor secretomes and thus could provide possible avenues for tumor prognosis and treatment evaluation. We hypothesized that the chromatin organization of PBMCs obtained from liquid biopsies, which integrates secretome signals with gene expression programs, provides efficient biomarkers to characterize tumor signals and the efficacy of proton therapy in tumor patients. Here, we show that chromatin imaging of PBMCs combined with machine learning methods provides such robust and predictive chromatin biomarkers. We show that such chromatin biomarkers enable the classification of 10 healthy and 10 pan-tumor patients. Furthermore, we extended our pipeline to assess the tumor types and states of 30 tumor patients undergoing (proton) radiation therapy. We show that our pipeline can thereby accurately distinguish between three tumor groups with up to 89% accuracy and enables the monitoring of the treatment effects. Collectively, we show the potential of chromatin biomarkers for cancer diagnostics and therapy evaluation.
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献