Biology-aware mutation-based deep learning for outcome prediction of cancer immunotherapy with immune checkpoint inhibitors

Author:

Liu Junyan,Islam Md TauhidulORCID,Sang Shengtian,Qiu Liang,Xing Lei

Abstract

AbstractThe response rate of cancer immune checkpoint inhibitors (ICI) varies among patients, making it challenging to pre-determine whether a particular patient will respond to immunotherapy. While gene mutation is critical to the treatment outcome, a framework capable of explicitly incorporating biology knowledge has yet to be established. Here we aim to propose and validate a mutation-based deep learning model for survival analysis on 1571 patients treated with ICI. Our model achieves an average concordance index of 0.59 ± 0.13 across nine types of cancer, compared to the gold standard Cox-PH model (0.52 ± 0.10). The “black box” nature of deep learning is a major concern in healthcare field. This model’s interpretability, which results from incorporating the gene pathways and protein interaction (i.e., biology-aware) rather than relying on a ‘black box’ approach, helps patient stratification and provides insight into novel gene biomarkers, advancing our understanding of ICI treatment.

Funder

Stanford University

U.S. Department of Health & Human Services | National Institutes of Health

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3