Latent class analysis-derived classification improves the cancer-specific death stratification of molecular subtyping in colorectal cancer

Author:

Zhou WenORCID,He Ming-Ming,Wang Feng,Xu Rui-HuaORCID,Wang FangORCID,Zhao QiORCID

Abstract

AbstractThe molecular subtypes of colorectal cancer (CRC) represent a comprehensive dissection of CRC heterogeneity. However, molecular feature-based classification systems have limitations in accurately prognosticating stratification due to the inability to distinguish cancer-specific deaths. This study aims to establish a classification system that bridges clinical characteristics, cause-specific deaths, and molecular features. We adopted latent class analysis (LCA) on 491,107 first primary CRC patients from the Surveillance, Epidemiology, and End Results (SEER) database to reveal hidden profiles of CRC. The LCA-derived classification scheme was further applied to The Cancer Genome Atlas (TCGA) to assess its effectiveness in improving the accurate stratification of molecular-based subtypes of CRC. Four classes were identified based on latent class analysis integrating demographic and clinicopathological information of CRC patients. The LCA-derived Class 1 (LCAC1) and the LCAC2 showed a high risk of dying from non-CRC, while patients in LCAC3 had a risk of dying from CRC 1.41 times that of LCAC1 (95% confidence interval [CI] = 1.39–1.43). LCAC4 had the lowest probability to die from non-CRC (hazard ratio [HR] = 0.22, 95% CI = 0.21–0.24) compared with LCAC1. Since the LCA-derived classification can identify patients susceptible to CRC-specific death, adjusting for this classification allows molecular-based subtypes to achieve more accurate survival stratification. We provided a classification system capable of distinguish CRC-specific death, which will improve the accuracy of consensus molecular subtypes for CRC patients’ survival stratification. Further studies are warranted to confirm the molecular features of LCA-derived classification to inform potential therapeutic strategies and treatment recommendations.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3