XRCC2 driven homologous recombination subtypes and therapeutic targeting in lung adenocarcinoma metastasis

Author:

Gong Han,Zhang Peihe,Liu Qiang,Tian Yuxuan,Chen Fuxin,Qian Siyi,Tu Chaofeng,Tan YueqiuORCID,Hu Xingming,Zhang BinORCID

Abstract

AbstractLung adenocarcinoma (LUAD) is a leading cause of cancer mortality, with many patients facing poor prognosis, particularly those with metastatic or drug-resistant tumors. Homologous recombination genes (HRGs) are crucial in tumor progression and therapy resistance, but their clinical significance in LUAD is not well understood. In this study, we systematically characterize key HRGs in LUAD patients, identifying two distinct HR subtypes associated with different outcomes and biological functions. We establish a 5-gene scoring system (XRCC2, RAD51, BRCA1, FANCA, and CHEK1) that reliably predicts patient outcomes and immunotherapy responses in LUAD. Bioinformatics analysis and clinical validation highlight XRCC2 as a crucial biomarker in LUAD. Functional investigations through in vivo and in vitro experiments reveal the role of XRCC2 in promoting lung cancer migration and invasion. Mechanistically, XRCC2 stabilizes vimentin (VIM) protein expression through deubiquitylation. We predict c-MYC as a potential regulator of XRCC2 and demonstrate that inhibiting c-MYC with compound 10058-F4 reduces XRCC2 and VIM expression. Preclinical studies show the synergistic inhibition of metastasis in vivo when combining 10058-F4 with doxorubicin (Dox). Our findings present a potential personalized predictive tool for LUAD prognosis, identifying XRCC2 as a critical biomarker. The c-Myc-XRCC2-VIM axis emerges as a promising therapeutic target for overcoming lung metastasis. This study provides valuable insights into LUAD, proposing a prognostic tool for further clinical validation and unveiling a potential therapeutic strategy for combating lung metastasis by targeting c-Myc-XRCC2-VIM.

Funder

National Natural Science Foundation of China

the college reform and development funds of the Hunan Provincial Department of Finance

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3