A multi-cancer early detection blood test using machine learning detects early-stage cancers lacking USPSTF-recommended screening

Author:

Vittone Janet,Gill David,Goldsmith Alex,Klein Eric A.,Karlitz Jordan J.ORCID

Abstract

AbstractUS Preventive Services Task Force (USPSTF) guidelines recommend single-cancer screening for select cancers (e.g., breast, cervical, colorectal, lung). Advances in genome sequencing and machine learning have facilitated the development of blood-based multi-cancer early detection (MCED) tests intended to complement single-cancer screening. MCED tests can interrogate circulating cell-free DNA to detect a shared cancer signal across multiple tumor types. We report real-world experience with an MCED test that detected cancer signals in three individuals subsequently diagnosed with cancers of the ovary, kidney, and head/neck that lack USPSTF-recommended screening. These cases illustrate the potential of MCED tests to detect early-stage cancers amenable to cure.

Publisher

Springer Science and Business Media LLC

Reference29 articles.

1. United States Preventive Services Task Force. USPSTF A and B Recommendations. https://www.uspreventiveservicestaskforce.org/Page/Name/uspstf-a-and-b-recommendations/ (United States Preventive Services Task Force, 2019).

2. Hackshaw, A. et al. Estimating the population health impact of a multi-cancer early detection genomic blood test to complement existing screening in the US and UK. Br. J. Cancer 125, 1432–1442 (2021).

3. Galleri®. Galleri® Multi-Cancer Early Detection (MCED) | Homepage. Galleri® Test https://www.galleri.com/. Accessed March 1, 2024.

4. Jamshidi, A. et al. Evaluation of cell-free DNA approaches for multi-cancer early detection. Cancer Cell 40, 1537–1549.e12 (2022).

5. Galleri®. Detailed Clinical Data | Galleri® for HCPs. Galleri® https://www.galleri.com/hcp/clinical-evidence/detailed-clinical-data-supporting-the-galleri-test. Accessed March 1, 2024.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3