Abstract
AbstractHepatocellular carcinoma (HCC) is the most common subtype of liver cancer, and assessing its histopathological grade requires visual inspection by an experienced pathologist. In this study, the histopathological H&E images from the Genomic Data Commons Databases were used to train a neural network (inception V3) for automatic classification. According to the evaluation of our model by the Matthews correlation coefficient, the performance level was close to the ability of a 5-year experience pathologist, with 96.0% accuracy for benign and malignant classification, and 89.6% accuracy for well, moderate, and poor tumor differentiation. Furthermore, the model was trained to predict the ten most common and prognostic mutated genes in HCC. We found that four of them, including CTNNB1, FMN2, TP53, and ZFX4, could be predicted from histopathology images, with external AUCs from 0.71 to 0.89. The findings demonstrated that convolutional neural networks could be used to assist pathologists in the classification and detection of gene mutation in liver cancer.
Funder
National Natural Science Foundation of China
Opening Fund of Engineering Research Center of Cognitive Healthcare of Zhejiang Province
Zhejiang Medical Health Science and Technology Project
Publisher
Springer Science and Business Media LLC
Subject
Computer Science Applications,History,Education
Cited by
166 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献