Fast, accurate, and racially unbiased pan-cancer tumor-only variant calling with tabular machine learning

Author:

McLaughlin R. TylerORCID,Asthana Maansi,Di Meo Marc,Ceccarelli MicheleORCID,Jacob Howard J.,Masica David L.

Abstract

AbstractAccurately identifying somatic mutations is essential for precision oncology and crucial for calculating tumor-mutational burden (TMB), an important predictor of response to immunotherapy. For tumor-only variant calling (i.e., when the cancer biopsy but not the patient’s normal tissue sample is sequenced), accurately distinguishing somatic mutations from germline variants is a challenging problem that, when unaddressed, results in unreliable, biased, and inflated TMB estimates. Here, we apply machine learning to the task of somatic vs germline classification in tumor-only solid tumor samples using TabNet, XGBoost, and LightGBM, three machine-learning models for tabular data. We constructed a training set for supervised classification using features derived exclusively from tumor-only variant calling and drawing somatic and germline truth labels from an independent pipeline using the patient-matched normal samples. All three trained models achieved state-of-the-art performance on two holdout test datasets: a TCGA dataset including sarcoma, breast adenocarcinoma, and endometrial carcinoma samples (AUC > 94%), and a metastatic melanoma dataset (AUC > 85%). Concordance between matched-normal and tumor-only TMB improves fromR2 = 0.006 to 0.71–0.76 with the addition of a machine-learning classifier, with LightGBM performing best. Notably, these machine-learning models generalize across cancer subtypes and capture kits with a call rate of 100%. We reproduce the recent finding that tumor-only TMB estimates for Black patients are extremely inflated relative to that of white patients due to the racial biases of germline databases. We show that our approach with XGBoost and LightGBM eliminates this significant racial bias in tumor-only variant calling.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3