Pan-cancer atlas of somatic core and linker histone mutations

Author:

Bonner Erin R.,Dawood Adam,Gordish-Dressman Heather,Eze AugustineORCID,Bhattacharya Surajit,Yadavilli Sridevi,Mueller Sabine,Waszak Sebastian M.,Nazarian Javad

Abstract

AbstractRecent genomic data points to a growing role for somatic mutations altering core histone and linker histone-encoding genes in cancer. However, the prevalence and the clinical and biological implications of histone gene mutations in malignant tumors remain incompletely defined. To address these knowledge gaps, we analyzed somatic mutations in 88 linker and core histone genes across 12,743 tumors from pediatric, adolescent and young adult (AYA), and adult cancer patients. We established a pan-cancer histone mutation atlas contextualized by patient age, survival outcome, and tumor location. Overall, 11% of tumors harbored somatic histone mutations, with the highest rates observed among chondrosarcoma (67%), pediatric high-grade glioma (pHGG, >60%), and lymphoma (>30%). Previously unreported histone mutations were discovered in pHGG and other pediatric brain tumors, extending the spectrum of histone gene alterations associated with these cancers. Histone mutation status predicted patient survival outcome in tumor entities including adrenocortical carcinoma. Recurrent pan-cancer histone mutation hotspots were defined and shown to converge on evolutionarily conserved and functional residues. Moreover, we studied histone gene mutations in 1700 pan-cancer cell lines to validate the prevalence and spectrum of histone mutations seen in primary tumors and derived histone-associated drug response profiles, revealing candidate drugs targeting histone mutant cancer cells. This study presents the first-of-its-kind atlas of both core and linker histone mutations across pediatric, AYA, and adult cancers, providing a framework by which specific cancers may be redefined in the context of histone and chromatin alterations.

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3