Abstract
AbstractNewborn screening programs are an integral part of public health systems aiming to save lives and improve the quality of life for infants with treatable disorders. Technological advancements have driven the expansion of newborn screening programs in the last two decades and the development of fast, accurate next-generation sequencing technology has opened the door to a range of possibilities in the field. However, technological challenges with short-read next-generation sequencing technologies remain significant in highly homologous genomic regions such as pseudogenes or paralogous genes and need to be considered when implemented in screening programs. Here, we simulate 50 genomes from populations around the world to test the extent to which high homology regions affect short-read mapping of genes related to newborn screening disorders and the impact of differential read lengths and ethnic backgrounds. We examine a 158 gene screening panel directly relevant to newborn screening and identify gene regions where read mapping is affected by homologous genomic regions at different read lengths. We also determine that the patient’s ethnic background does not have a widespread impact on mapping accuracy or coverage. Additionally, we identify newborn screening genes where alternative forms of sequencing or variant calling pipelines should be considered and demonstrate that alterations to standard variant calling can retrieve some formerly uncalled variants.
Publisher
Springer Science and Business Media LLC
Subject
Genetics (clinical),Genetics,Molecular Biology
Reference62 articles.
1. Centers for Disease Control and Prevention (CDC). Ten great public health achievements–United States, 2001–2010. Morb. Mortal. Wkly. Rep. 60, 619–623 (2011).
2. Guthrie, R. & Susi, A. A simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants. Pediatrics 32, 338–343 (1963).
3. Guthrie, R. The origin of newborn screening. Screening 1, 5–15 (1992).
4. Wilcken, B., Wiley, V., Hammond, J. & Carpenter, K. Screening newborns for inborn errors of metabolism by tandem mass spectrometry. N. Engl. J. Med. 348, 2304–2312 (2003).
5. Therrell, B. L. et al. Current status of newborn screening worldwide: 2015. Semin Perinatol. 39, 171–187 (2015).
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献