Abstract
AbstractThe tissues of origin of plasma DNA can be revealed by methylation patterns. However, the relative DNA contributions from megakaryocytes and erythroblasts into plasma appeared inconsistent among studies. To shed light into this phenomenon, we developed droplet digital PCR (ddPCR) assays for the differential detection of contributions from these cell types in plasma based on megakaryocyte-specific and erythroblast-specific methylation markers. Megakaryocytic DNA and erythroid DNA contributed a median of 44.2% and 6.2% in healthy individuals, respectively. Patients with idiopathic thrombocytopenic purpura had a significantly higher proportion of megakaryocytic DNA in plasma compared to healthy controls (median: 59.9% versus 44.2%; P = 0.03). Similarly, patients with β-thalassemia were shown to have higher proportions of plasma erythroid DNA compared to healthy controls (median: 50.9% versus 6.2%) (P < 0.0001). Hence, the concurrent analysis of megakaryocytic and erythroid lineage-specific markers could facilitate the dissection of their relative contributions and provide information on patients with hematological disorders.
Funder
Innovation and Technology Commission
Li Ka Shing Foundation
Publisher
Springer Science and Business Media LLC
Reference23 articles.
1. Chiu, R. W. K. et al. Non-invasive prenatal assessment of trisomy 21 by multiplexed maternal plasma DNA sequencing: Large scale validity study. BMJ. 342, 217 (2011).
2. Lo, Y. M. D. et al. Maternal plasma DNA sequencing reveals the genome-wide genetic and mutational profile of the fetus. Sci. Transl. Med. 2, 61ra91 (2010).
3. Yung, T. K. F. et al. Single-molecule detection of epidermal growth factor receptor mutations in plasma by microfluidics digital PCR in non-small cell lung cancer patients. Clin. Cancer Res. 15, 2076–2084 (2009).
4. Rostami, A. et al. Senescence, necrosis, and apoptosis govern circulating cell-free DNA release kinetics. Cell Rep. 31, 107830 (2020).
5. Jahr, S. et al. DNA fragments in the blood plasma of cancer patients: Quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res. 61, 1659–1665 (2001).