Flexible and high precision thermal metasurface

Author:

Wang JiyaoORCID,Qin Ling,Xu WeiORCID

Abstract

AbstractThermal metamaterials are artificial materials used to manipulate heat flow in many applications, such as thermal protection, thermal camouflage, and precise temperature control. Most of the existing thermal metamaterials are mainly based on metal, which makes their fabrication complex and time-consuming, and limits their flexibility. Here, we show a strategy to simplify the fabrication process, improve machining accuracy, and realize flexibility in thermal metasurfaces. Our proposed thermal metasurface is fabricated by laser engraving of copper-graphene coating surface, utilizing graphene coating with high thermal conductivity instead of the traditional filling materials of low thermal conductivity. It maintains the integrity of copper substrate, giving the metasurface a good heat dispersion. Controlled temperature gradient patterns are established, and the metasurface can be bent without changing its features, except for a slight variation in its thermal gradient. Finally, its cloaking ability is demonstrated by camouflaging the same heat source in the shape of different objects. Our designed metasurface mitigates the limitations in design and fabrication of existing thermal metamaterials, and can be used in applications requiring large flexibility, thermal illusion, and large thermal gradients on small scales.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. DETRs with Hybrid Matching;2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR);2023-06

2. Physically Realizable Natural-Looking Clothing Textures Evade Person Detectors via 3D Modeling;2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR);2023-06

3. Reconfigurability analysis of an all‐dielectric thermal microfluidic‐based metasurface;Engineering Reports;2023-03-06

4. Single-phase continuum soft elastic metamaterial design based on variable boundary conditions through topology optimization;Journal of Applied Physics;2023-02-06

5. Reconfigurable Metasurface of Magnetoplasmonic Microbundle Array for Chiral Signal Enhancing;Advanced Optical Materials;2022-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3