Abstract
AbstractThe magnetic flux pinning capabilities of YBa2Cu3O7-x (YBCO) coated conductors vary strongly across different regions of the magnetic field–temperature phase diagram and with the orientation of the magnetic field θ. Here, we determine the optimal pinning landscape for a given region of the phase diagram by investigating the critical current density Jc(H,θ,T) in the 5–77 K temperature range, from self-field to high magnetic fields of 35 T. Our systematic analysis reveals promising routes for artificially engineering YBCO coated conductors in any region of interest of the phase diagram. In solution-derived nanocomposites, we identify the relevance of coexisting high amounts of short stacking faults, Cu-O vacancy clusters, and segmentation of twin boundaries, in combination with nanoparticles, for enhanced pinning performance at high magnetic fields and low temperatures. Moreover, we demonstrate that twin boundaries preserve a high pinning energy in thick YBCO films, which is beneficial for the pinning performance at high magnetic fields and high temperatures.
Publisher
Springer Science and Business Media LLC
Subject
Mechanics of Materials,General Materials Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献