Abstract
AbstractLaser powder-bed fusion (L-PBF) additive manufacturing presents ample opportunities to produce net-shape parts. The complex laser-powder interactions result in high cooling rates that often lead to unique microstructures and excellent mechanical properties. Refractory high-entropy alloys show great potential for high-temperature applications but are notoriously difficult to process by additive processes due to their sensitivity to cracking and defects, such as un-melted powders and keyholes. Here, we present a method based on a normalized model-based processing diagram to achieve a nearly defect-free TiZrNbTa alloy via in-situ alloying of elemental powders during L-PBF. Compared to its as-cast counterpart, the as-printed TiZrNbTa exhibits comparable mechanical properties but with enhanced elastic isotropy. This method has good potential for other refractory alloy systems based on in-situ alloying of elemental powders, thereby creating new opportunities to rapidly expand the collection of processable refractory materials via L-PBF.
Publisher
Springer Science and Business Media LLC
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献