Algorithmic design of origami mechanisms and tessellations

Author:

Walker Andreas,Stankovic TinoORCID

Abstract

AbstractOrigami, the ancient art of paper folding, embodies techniques for transforming a flat sheet of paper into shapes of arbitrary complexity. Although this makes origami a conceptually attractive source of inspiration when designing foldable structures and reconfigurable metamaterials for multiple functionalities, their designs are still based on a set of well-studied patterns leaving the full potential of origami inaccessible for design practitioners and researchers. Here, we present a generalized approach for the algorithmic design of rigidly-foldable origami structures exhibiting a single kinematic degree of freedom. We build on generalized conditions for rigid foldability of degree-n vertices to design origami patterns of arbitrary size and complexity. The versatility of the approach is demonstrated by its capability to not only generate, analyze and optimize regular origami patterns, but also generate and analyze kirigami, generic three-dimensional panel-hinge assemblages and their tessellations. Due to its versatility, the approach provides an inexhaustible source of foldable patterns to inspire the design of metamaterials for a wide range of applications.

Publisher

Springer Science and Business Media LLC

Subject

Mechanics of Materials,General Materials Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3