Stress–strain relationships and yielding of metal-organic framework monoliths

Author:

Tricarico Michele,Besnard Cyril,Cinque GianfeliceORCID,Korsunsky Alexander M.ORCID,Tan Jin-ChongORCID

Abstract

AbstractMetal-organic frameworks (MOFs) have emerged as a versatile material platform for a wide range of applications. However, the development of practical devices is constrained by their inherently low mechanical stability. The synthesis of MOFs in a monolithic morphology represents a viable way for the transition of these materials from laboratory research to real-world applications. For the design of MOF-based devices, the mechanical characterization of such materials cannot be overlooked. In this regard, stress-strain relationships represent the most valuable tool for assessing the mechanical response of materials. Here, we use flat punch nanoindentation, micropillar compression and Raman microspectroscopy to investigate the stress-strain behaviour of MOF monoliths. A pseudo-plastic flow is observed under indentation, where the confining pressure prevents unstable crack propagation. Material flow is accommodated by grain boundary sliding, with occasional stepwise cracking to accommodate excessive stress building up. Micropillar compression reveals a brittle failure of ZIF-8, while plastic flow is observed for MIL-68.

Publisher

Springer Science and Business Media LLC

Subject

Mechanics of Materials,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3