Abstract
AbstractNon-degradable plastic waste jeopardizes our environment, yet our modern lifestyle and current technologies are impossible to sustain without plastics. Bio-synthesized and biodegradable alternatives such as polyhydroxyalkanoates (PHAs) have the potential to replace large portions of the world’s plastic supply with cradle-to-cradle materials, but their chemical complexity and diversity limit traditional resource-intensive experimentation. Here, we develop multitask deep neural network property predictors using available experimental data for a diverse set of nearly 23,000 homo- and copolymer chemistries. Using the predictors, we identify 14 PHA-based bioplastics from a search space of almost 1.4 million candidates which could serve as potential replacements for seven petroleum-based commodity plastics that account for 75% of the world’s yearly plastic production. We also discuss possible synthesis routes for the identified promising materials.
Funder
United States Department of Defense | United States Navy | Office of Naval Research
Alexander von Humboldt-Stiftung
LANL Center for Nonlinear Studies (CNLS) Summer 2021 Fellowship Award
DOE | LDRD | Los Alamos National Laboratory
Publisher
Springer Science and Business Media LLC
Subject
Mechanics of Materials,General Materials Science
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献