Morphology controlled performance of ternary layered oxide cathodes

Author:

Meng ZifeiORCID,Ma XiaotuORCID,Azhari LuqmanORCID,Hou JiahuiORCID,Wang YanORCID

Abstract

AbstractWith the rapid advancement of electric vehicle technologies, ternary layered oxide cathodes in commercial Li-ion batteries have become increasingly promising due to their high energy density and low cost. However, the need for higher energy density and cell stability has posed significant challenges in their development. While various coating and doping strategies have been demonstrated to improve the rate and cycle performance of cathode materials, morphology-focused modifications of these cathodes are sometimes overlooked, despite their impact on electrochemical performance. Herein, this review focuses on the morphological relationship of cathode materials to their electrochemical performance. We summarize the effects of cathode materials morphology on Li-ion diffusion and stability. We also discuss the recent advances in the development of cathode materials with different morphologies. Finally, we present future perspectives for the design of cathode materials with optimized morphologies to promote their commercialization and fundamental research.

Publisher

Springer Science and Business Media LLC

Subject

Mechanics of Materials,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3