Abstract
AbstractLight activated modulation of neural activity is an emerging field for the basic investigation of neural systems and development of new therapeutic methods such as artificial retina. Colloidal inorganic nanocrystals have great potential for neural interfaces due to their adjustable optoelectronic properties via high-level structural, compositional, and size control. However, toxic heavy metal content (e.g., cadmium, mercury), electrochemical coupling to the cells and low photon-to-current efficiency limit their effective use. Here, we introduce the use of aluminum antimonide (AlSb) nanocrystals as the cell interfacing layer for capacitive neural stimulation in the blue spectrum. We demonstrate successful photostimulation of primary hippocampal neurons below ocular safety limits. In addition, our device shows high biocompatibility in vitro and passive accelerated ageing tests indicate a functional lifetime over 3 years showing their feasible use for chronic implants. We demonstrate that nanocrystal biointerfaces hold high promise for future bioelectronics and protheses.
Publisher
Springer Science and Business Media LLC
Reference55 articles.
1. Parameswaran, R. et al. Photoelectrochemical modulation of neuronal activity with free-standing coaxial silicon nanowires. Nat. Nanotechnol. 13, 260 (2018).
2. Wang, Y. & Guo, L. Nanomaterial-enabled neural stimulation. Front. Neurosci. 10, 1–7 (2016).
3. Pappas, T. C. et al. Nanoscale engineering of a cellular interface with semiconductor nanoparticle films for photoelectric stimulation of neurons. Nano Lett. 7, 513–519 (2007).
4. Efros, A. L. et al. Evaluating the potential of using quantum dots for monitoring electrical signals in neurons. Nat. Nanotechnol. 13, 278–288 (2018).
5. Bahmani Jalali, H. et al. Exciton recycling via InP quantum dot funnels for luminescent solar concentrators. Nano Res. 12, 1–7 (2020).
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献