Band transport evidence in PEDOT:PSS films using broadband optical spectroscopy from terahertz to ultraviolet region

Author:

Guo Zijing,Sato Tetsu,Han Yang,Takamura Naoki,Ikeda Ryohei,Miyamoto TatsuyaORCID,Kida Noriaki,Ogino Makiko,Takahashi YoutarouORCID,Kasuya NaotakaORCID,Watanabe ShunORCID,Takeya JunORCID,Wei QingshuoORCID,Mukaida Masakazu,Okamoto HiroshiORCID

Abstract

AbstractPoly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is a prototypical conducting polymer. When a polar solvent is used during film fabrication, the hole-doped PEDOT oligomers form crystalline clusters in the films, exhibiting high conductivity. However, whether hole carriers exhibit band transport has not been clarified yet. Here, we employ a multilayer spin-coating method using an aqueous solution with ethylene glycol, with additional procedures of dipping the films in ethylene glycol or dropping sulfuric acid onto the films, to achieve a high DC conductivity of ∼1000 S cm−1 or higher. Using terahertz time-domain spectroscopy and far-infrared-to-ultraviolet reflection spectroscopy, we derive complex optical conductivity $$\widetilde{\sigma }$$ σ ̃ spectra, which are reproduced by the sum of the Drude response, and Lorentz-oscillator responses due to phonons. These results demonstrate the band transport, which is further confirmed by the Hall effect measurements. The hole mobility estimated from the spectral analyses is 7–11 cm2 V−1 s−1, a significantly large value. The reported evaluation methods for broadband $$\widetilde{\sigma }$$ σ ̃ spectra can help elucidate carrier transport mechanisms in various conducting films.

Funder

MEXT | Japan Society for the Promotion of Science

MEXT | JST | Core Research for Evolutional Science and Technology

The program for Leading Graduate Schools

The University Fellowship Program for Science and Technology Innovations of Japan Science and Technology Agency

Pioneering Research Initiated by Next Generation of Japan Science and Technology Agency

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3