Nanoscale light field imaging with graphene

Author:

Yu Tongcheng,Rodriguez Francisco,Schedin Fred,Kravets Vasyl G.,Zenin Vladimir A.ORCID,Bozhevolnyi Sergey I.ORCID,Novoselov Konstantin S.ORCID,Grigorenko Alexander N.

Abstract

AbstractModern nano-optics and nanophotonics rely heavily on the precise formation of nanostructured light fields. Accurate and deterministic light field formation and characterization are indispensable for device operation as well as for revealing the underlying physical mechanisms involved. Despite a significant progress made in detection of scattered light with extremely high precision down to 1 nm resolution, there are only a limited number of techniques for direct subwavelength light mapping which do not rely on measurements of light scattering, fluorescence, or non-linear light conversion. Hence, techniques for direct conversion of light to electrical signals with precise and non-destructive imaging of nanoscale light would be of great benefit. Here, we report a nanoscale light field imaging approach based on photodetection with a p-n junction that is induced and moved inside a graphene probe by gate voltage, formed by a set of external electrodes. The spatial resolution of this electrical scanning technique is determined by p-n junction width, reaching ~ 20 nm. The developed approach is demonstrated with mapping the electric field distribution of a plasmonic slot-waveguide at telecom wavelengths. Our method provides a non-invasive nanoscale light field imaging that ensures extremely high spatial resolution and precision.

Funder

EC | Horizon 2020 Framework Programme

RCUK | Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Mechanics of Materials,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3