Abstract
AbstractHigh thermal conductive polymers have become more important because equipment requires high performance, high-energy density, and high integration. There are different strategies to make high thermal conductive polymers, among which is the synthesis of polymers in the liquid crystal phase. However, the thermal conductivity of such material is rarely beyond 1 W m−1 K−1 because of the disordered molecular directionality. The disordered directionality between crystal zones limits the thermal conductivity in a specific direction. Here, we show a method for unifying the direction of crystal zones by applying an external electric field on the liquid crystal monomers. Meanwhile, by exposing the transparent equipment and specially designed photopolymerisable monomer in UV light, the liquid crystal monomer is in situ polymerised into a liquid crystal polymer with a high intrinsic thermal conductivity of 1.02 W m−1 K−1. The molecular alignment was characterised and resulted in the resultant high conductivity.
Funder
National Natural Science Foundation of China
Science and Technology Base and Talent Project of Guang X
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献