Abstract
AbstractLiquid metal dealloying is a promising technique to produce bicontinuous porous metals with high specific surface areas. This processing technique relies on the selective dissolution of a component from a precursor alloy into a metal bath while the remaining insoluble component self-assembles into an interconnected structure. However, it has not been applied to produce nickel-containing porous metals because of the lack of a suitable metallic bath. Here we show that nickel-containing porous metals can be produced by partial liquid metal dealloying. The amount of soluble component in the resulting microstructure can be tuned by carefully choosing the bath element so that the ligaments of desired composition equilibrate with the metal bath. We demonstrate this partial liquid dealloying concept using magnesium and bismuth baths and rationalize the results through thermodynamics calculations. Furthermore, we apply this technique to produce porous nickel-containing stainless steel and high-entropy alloy.
Funder
MEXT | Japan Society for the Promotion of Science
Ministry of Education, Culture, Sports, Science and Technology
Publisher
Springer Science and Business Media LLC
Subject
Mechanics of Materials,General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献