Molecular mechanisms of cell cryopreservation with polyampholytes studied by solid-state NMR

Author:

Matsumura KazuakiORCID,Hayashi FumiakiORCID,Nagashima Toshio,Rajan RobinORCID,Hyon Suong-Hyu

Abstract

AbstractPolyampholytes are emerging macromolecular membrane non-penetrating cryoprotectants; however, the mechanism behind their cryopreservation remains unclear. Here, we investigated the mechanism using solid-state NMR spectroscopy. The polymer-chain dynamics and the water and ion mobilities in the presence of various membrane penetrating and non-penetrating cryoprotectants were monitored at low temperatures to mimic cryopreservation conditions. NMR experiments revealed that the water, Sodium-ion, and polymer-chain signals in a carboxylated poly-ʟ-lysine (COOH-PLL) solution broadened upon cooling, indicating increasingly restricted mobility and increased solution viscosity. Moreover, strong intermolecular interactions facilitated the COOH-PLL glass transition, trapping water and salt in the gaps of the reversible matrix, preventing intracellular ice formation and osmotic shock during freezing; this reduced cell stress is responsible for cryoprotection. This simple NMR technique enabled the correlation of the cryoprotective properties of polymers that operate through mechanisms different from those of current cryoprotectants, and will facilitate the future molecular design of cryoprotectants.

Funder

MEXT | Japan Society for the Promotion of Science

Collaborative Research Project organized by the Interuniversity Bio-Backup Project

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3