Abstract
AbstractPolyampholytes are emerging macromolecular membrane non-penetrating cryoprotectants; however, the mechanism behind their cryopreservation remains unclear. Here, we investigated the mechanism using solid-state NMR spectroscopy. The polymer-chain dynamics and the water and ion mobilities in the presence of various membrane penetrating and non-penetrating cryoprotectants were monitored at low temperatures to mimic cryopreservation conditions. NMR experiments revealed that the water, Sodium-ion, and polymer-chain signals in a carboxylated poly-ʟ-lysine (COOH-PLL) solution broadened upon cooling, indicating increasingly restricted mobility and increased solution viscosity. Moreover, strong intermolecular interactions facilitated the COOH-PLL glass transition, trapping water and salt in the gaps of the reversible matrix, preventing intracellular ice formation and osmotic shock during freezing; this reduced cell stress is responsible for cryoprotection. This simple NMR technique enabled the correlation of the cryoprotective properties of polymers that operate through mechanisms different from those of current cryoprotectants, and will facilitate the future molecular design of cryoprotectants.
Funder
MEXT | Japan Society for the Promotion of Science
Collaborative Research Project organized by the Interuniversity Bio-Backup Project
Publisher
Springer Science and Business Media LLC
Cited by
61 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献