Low-temperature hysteresis broadening emerging from domain-wall creep dynamics in a two-phase competing system

Author:

Matsuura KeisukeORCID,Nishizawa Yo,Kinoshita Yuto,Kurumaji Takashi,Miyake AtsushiORCID,Oike HiroshiORCID,Tokunaga MasashiORCID,Tokura YoshinoriORCID,Kagawa FumitakaORCID

Abstract

AbstractHysteretic behaviour accompanies any first-order phase transition, forming a basis for many applications. However, its quantitative understanding remains challenging, and even a qualitative understanding of pronounced hysteresis broadening at low temperature, which is often observed in magnetic-field-induced first-order phase transition materials, is unclear. Here, we show that such pronounced hysteresis broadening emerges if the phase-front velocity during the first-order phase transition exhibits an activated behaviour as a function of both temperature and magnetic field. This is demonstrated by using real-space magnetic imaging techniques, for the magnetic-field-induced first-order phase transition between antiferromagnetic and ferrimagnetic phases in (Fe0.95Zn0.05)2Mo3O8. When combined with the Kolmogorov-Avrami-Ishibashi model, the observed activated temperature- and field-dependences of the growth velocity of the emerging antiferromagnetic domain quantitatively reproduce the pronounced hysteresis broadening. Furthermore, the same approach also reproduces the field-sweep-rate dependence of the transition field observed in the experiment. Our findings thus provide a quantitative and comprehensive understanding of pronounced hysteresis broadening from the microscopic perspective of domain growth.

Funder

MEXT | Japan Society for the Promotion of Science

MEXT | JST | Precursory Research for Embryonic Science and Technology

MEXT | JST | Core Research for Evolutional Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3