Abstract
AbstractShort-wavelength (blue-violet-to-green) lasers with high power and high beam quality are required for various applications including the machining of difficult-to-process materials and high-brightness illuminations and displays. Promising light sources for such applications are wide-bandgap GaN-based photonic-crystal surface-emitting lasers (PCSELs), which are based on two-dimensional resonance in the photonic crystal. Developments of these devices have lagged behind those of longer-wavelength GaAs-based PCSELs, because device designs for achieving robust two-dimensional resonance and a nanofabrication process that avoids introducing disorders have remained elusive for wide-bandgap GaN-based materials. Here, we address these issues and successfully realize GaN-based PCSELs with high, watt-class (>1 W) output power and a circular, single-lobed beam with a very narrow (~0.2°) divergence angle at blue wavelengths. In addition, we demonstrate continuous-wave operation with a high output power (~320 mW) and a high beam quality (M2~1). Our results will enable the use of GaN-based PCSELs in the above-mentioned applications.
Funder
New Energy and Industrial Technology Development Organization
Council for Science, Technology and Innovation
Publisher
Springer Science and Business Media LLC
Subject
Mechanics of Materials,General Materials Science
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献