Abstract
AbstractBovine serum albumin (BSA) protein is widely used to fabricate antifouling coatings for nanobiotechnology applications. Numerous BSA protein options are commercially available and obtained through different purification methods, however, there is no guidance on which ones are preferable for antifouling coatings. Herein, we investigate the real-time fabrication of antifouling coatings composed of BSA proteins obtained through different purification methods, and report significant differences in ultrathin film coating properties and ability to mitigate serum biofouling and to prevent nanoparticle-induced immune reactions. Mechanistic studies unravel the source of these performance variations, which are related to some BSA proteins containing fatty acid stabilizers while other BSA proteins are fatty acid-free depending on the purification method. Fatty acid-free BSA proteins exhibit greater conformational flexibility and less charge repulsion, which allow them to form more rigidly attached and tightly packed coatings on flat surfaces and nanoparticles that result in superior application performance.
Funder
National Research Foundation Singapore
Publisher
Springer Science and Business Media LLC
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献