Abstract
AbstractFractionally doped perovskites oxides (FDPOs) have demonstrated ubiquitous applications such as energy conversion, storage and harvesting, catalysis, sensor, superconductor, ferroelectric, piezoelectric, magnetic, and luminescence. Hence, an accurate, cost-effective, and easy-to-use methodology to discover new compositions is much needed. Here, we developed a function-confined machine learning methodology to discover new FDPOs with high prediction accuracy from limited experimental data. By focusing on a specific application, namely solar thermochemical hydrogen production, we collected 632 training data and defined 21 desirable features. Our gradient boosting classifier model achieved a high prediction accuracy of 95.4% and a high F1 score of 0.921. Furthermore, when verified on additional 36 experimental data from existing literature, the model showed a prediction accuracy of 94.4%. With the help of this machine learning approach, we identified and synthesized 11 new FDPO compositions, 7 of which are relevant for solar thermochemical hydrogen production. We believe this confined machine learning methodology can be used to discover, from limited data, FDPOs with other specific application purposes.
Funder
U.S. Department of Energy
National Aeronautics and Space Administration
Publisher
Springer Science and Business Media LLC
Subject
Mechanics of Materials,General Materials Science
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献