Nodal superconductivity in miassite Rh17S15

Author:

Kim Hyunsoo,Tanatar Makariy A.ORCID,Kończykowski Marcin,Grasset RomainORCID,Kaluarachchi Udhara S.,Teknowijoyo Serafim,Cho KyuilORCID,Sapkota Aashish,Wilde John M.,Krogstad Matthew J.ORCID,Bud’ko Sergey L.ORCID,Brydon Philip M. R.ORCID,Canfield Paul C.,Prozorov RuslanORCID

Abstract

AbstractSolid state chemistry has produced a plethora of materials with properties not found in nature. For example, high-temperature superconductivity in cuprates is drastically different from the superconductivity of naturally occurring metals and alloys and is frequently referred to as unconventional. Unconventional superconductivity is also found in other synthetic compounds, such as iron-based and heavy-fermion superconductors. Here, we report compelling evidence of unconventional nodal superconductivity in synthetic samples of Rh17S15 (Tc = 5.4 K), which is also found in nature as the mineral miassite. We investigated the temperature-dependent variation of the London penetration depth Δλ(T) and the disorder evolution of the critical superconducting temperature Tc and the upper critical field Hc2(T) in single crystalline Rh17S15. We found a T − linear temperature variation of Δλ(T) below 0.3Tc, which is consistent with the presence of nodal lines in the superconducting gap of Rh17S15. The nodal character of the superconducting state is supported by the observed suppression of Tc and Hc2(T) in samples with a controlled level of non-magnetic disorder introduced by 2.5 MeV electron irradiation. We propose a nodal sign-changing superconducting gap in the A1g irreducible representation, which preserves the cubic symmetry of the crystal and is in excellent agreement with the derived superfluid density. To the best of our knowledge, this establishes miassite as the only mineral known so far that reveals unconventional superconductivity in its clean synthetic form, though it is unlikely that it is present in natural crystals because of unavoidable impurities that quickly destroy nodal superconductivity.

Publisher

Springer Science and Business Media LLC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3