Abstract
AbstractArtificial intelligence relying on structure-property databases is an emerging powerful tool to discover new materials with targeted properties. However, this approach cannot be easily applied to tangible structures, such as plastic composites and fabrics, because of their high structural complexity. Here, we propose a deep learning computational framework that can implement virtual experiments on tangible structures. Structural representations of complex carbon nanotube films were conducted by multiple generative adversarial networks of scanning electron microscope images at four levels of magnifications, enabling a deep learning prediction of multiple properties such as electrical conductivity and surface area. 1716 virtual experiments were completed within an hour, a task that would take years for real experiments. The data can be used as a versatile database for material science, in analogy to databases of molecules and solids used in cheminformatics. Useful examples are the investigation of correlations between electrical conductivity, specific surface area, wall number phase diagrams, economic performance, and inversely designed supercapacitors.
Funder
New Energy and Industrial Technology Development Organization
Publisher
Springer Science and Business Media LLC
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献