Ptychography at the carbon K-edge

Author:

Mille NicolasORCID,Yuan HaoORCID,Vijayakumar JaianthORCID,Stanescu StefanORCID,Swaraj SufalORCID,Desjardins KewinORCID,Favre-Nicolin VincentORCID,Belkhou Rachid,Hitchcock Adam P.ORCID

Abstract

AbstractPtychography is a coherent diffraction imaging technique that measures diffraction patterns at many overlapping points on a sample and then uses an algorithm to reconstruct amplitude and phase images of the object and probe. Here, we report imaging, spectroscopy and linear dichroism ptychographic measurements at the carbon K-edge. This progress was achieved with a new generation of scientific Complementary Metal Oxide Semiconductor (sCMOS) X-ray cameras with an uncoated image sensor which has fast image transfer and high quantum efficiency at the carbon K-edge. Reconstructed amplitude and phase contrast images, C 1s spectral stacks, and X-ray linear dichroism of carbon nanotubes at the carbon K-edge were measured with ptychography. Ptychography and conventional Scanning Transmission X-ray Microscopy (STXM) are compared using results acquired from the same area. Relative to STXM, ptychography provides both improved spatial resolution and improved image quality. We used defocus ptychography, with an X-ray beam spot size of 1.0 micron, in order to reduce radiation damage and carbon deposition. Comparable spatial resolution was achieved to that of ptychography performed with a focused beam. Ptychography at the carbon K-edge offers unique opportunities to perform high resolution spectromicroscopy on organic materials important in medicine, biology, environmental science and energy materials.

Funder

Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada

Publisher

Springer Science and Business Media LLC

Subject

Mechanics of Materials,General Materials Science

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3