Abstract
AbstractRydberg excitons in Cu2O feature giant optical nonlinearities. To exploit these nonlinearities for quantum applications, the confinement must match the Rydberg blockade size, which in Cu2O could be as large as a few microns. Here, in a top-down approach, we show how exciton confinement can be realised by focused-ion-beam etching of a polished bulk Cu2O crystal without noticeable degradation of the excitonic properties. The etching of the crystal to micron sizes allows for tuning the energies of Rydberg excitons locally, and precisely, by optically induced temperature change. These results pave the way for exploiting the large nonlinearities of Rydberg excitons in micropillars for making non-classical light sources, while the precise tuning of their emission energy opens up a viable pathway for realising a scalable photonic quantum simulation platform.
Funder
RCUK | Engineering and Physical Sciences Research Council
Royal Society
Carnegie Trust for the Universities of Scotland
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献