Abstract
AbstractControlling the crystallographic orientation of 3D photonic crystals is important as it determines the behavior of light propagating through the device. Blue phases self-assemble into unique soft 3D photonic crystals with chiral structures for circular-polarization selectivity, but it has remained a challenge to control its 3D orientation. Here, we show that the orientation of blue phases can be precisely controlled to follow a predefined pattern imprinted on a substrate by exploiting field-induced phase transitions. Obtaining the blue phase through the field-induced chiral nematic phase and tetragonal blue phase X results in a highly oriented blue phase I with the crystallographic [001] direction aligned along the surface anchoring. Our approach is applied to fabricating a Bragg-Berry hologram with omnidirectional circular-polarization selectivity, where the hologram is visible only for one circular-polarization under all incident angles. Such devices are difficult to fabricate using conventional optical materials, thereby demonstrating the potential of self-organizing soft matter for photonics.
Funder
MEXT | Japan Society for the Promotion of Science
Ministry of Education, Culture, Sports, Science and Technology
Publisher
Springer Science and Business Media LLC
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献