Nonlocal interaction engineering of 2D roton-like dispersion relations in acoustic and mechanical metamaterials

Author:

Wang Ke,Chen YiORCID,Kadic Muamer,Wang Changguo,Wegener MartinORCID

Abstract

AbstractThe interior of the synthetic unit cells and their interactions determine the wave properties of metamaterials composed of periodic lattices of these cells. While local interactions with the nearest neighbors are well appreciated, nonlocal beyond-nearest-neighbor interactions are often considered as a nuisance. Here, by introducing a versatile effectively two-dimensional metamaterial platform for airborne sound and elastic waves, we exploit nonlocal effects as a powerful design tool. Within a simplified discrete model, we analytically show that the lowest band can be engineered by Fourier synthesis, where the $$N$$ N -th order Fourier coefficient is determined by the $$N$$ N -th nearest-neighbor interaction strength. Roton-like dispersion relations are an example. The results of the discrete model agree well with a refined model and with numerical calculations. In addition, we engineer the passage of waves from a local metamaterial into a nonlocal metamaterial by carefully tailoring the transition region between the two.

Funder

Alexander von Humboldt-Stiftung

Publisher

Springer Science and Business Media LLC

Subject

Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3