Anti-site defect-induced disorder in compensated topological magnet MnBi2-xSbxTe4

Author:

Lüpke FelixORCID,Kolmer MarekORCID,Yan Jiaqiang,Chang Hao,Vilmercati PaoloORCID,Weitering Hanno H.ORCID,Ko WonheeORCID,Li An-PingORCID

Abstract

AbstractThe gapped Dirac-like surface states of compensated magnetic topological insulator MnBi2-xSbxTe4 (MBST) are a promising host for exotic quantum phenomena such as the quantum anomalous Hall effect and axion insulating state. However, it has become clear that atomic defects undermine the stabilization of such quantum phases as they lead to spatial variations in the surface state gap and doping levels. The large number of possible defect configurations in MBST make studying the influence of individual defects virtually impossible. Here, we present a statistical analysis of the nanoscale effect of defects in MBST with x=0.64, by scanning tunnelling microscopy/spectroscopy. We identify (Bi,Sb)Mn anti-site defects to be the main source of the observed doping fluctuations, leading towards the formation of nanoscale charge puddles and effectively closing the transport gap. Our findings will guide further optimization of this material system via defect engineering, to enable exploitation of its promising properties.

Funder

U.S. Department of Energy

Publisher

Springer Science and Business Media LLC

Subject

Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3