Abstract
AbstractMolecular motion in nanosized channels can be highly complicated. For example, water molecules in ultranarrow hydrophobic nanopores move rapidly and coherently in a single file, whereas by increasing the pore size they organize into coaxial tubes, displaying stratified diffusion. Interestingly, an analogous complex motion is predicted in viscous charged fluids, such as room temperature ionic liquids (RTILs) confined in nanoporous carbon or silica; however, experimental evidence is still pending. Here, by combining 1H NMR diffusion experiments in different relaxation windows with molecular dynamics simulations, we show that the imidazolium-based RTIL [BMIM]+[TCM]−, entrapped in the MCM-41 silica nanopores, exhibits an intricate dynamic molecular ordering; adsorbed RTIL molecules form a fluctuating charged layer near the pore walls, while in the bulk pore space they diffuse discretely in coaxial tubular shells, with molecular mean square displacement following a nearly ∼τ0.5 time dependence, characteristic of single file diffusion.
Publisher
Springer Science and Business Media LLC
Subject
Mechanics of Materials,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献