Extreme Tibetan Plateau cooling caused by tropical volcanism

Author:

Zhu Xian,Ji Zhenming,Liu FeiORCID,Dong Wenjie,Gao ChaochaoORCID

Abstract

AbstractThe extreme cooling of the Tibetan Plateau (TP) during the boreal winter typically poses threats to the local environment and people’s safety, and it is usually attributed to internal climate variability. Here we demonstrate that the five recent large tropical volcanic eruptions since 1880 have caused an average extreme cooling of up to −0.80 K on the TP in observations during the first boreal winter following the eruptions. This cooling effect is much larger than the global average terrestrial cooling of −0.30 K after the eruptions. The multi-model ensemble mean (MME) of the Atmospheric Model Intercomparison Project (AMIP) runs from Phase 6 of the Coupled Model Intercomparison Project (CMIP6), in which realistic sea surface temperatures (SST) were specified, can simulate an extreme TP cooling response of up to −0.79 K, which is much larger than the direct aerosol cooling of −0.36 K simulated by the historical runs. The positive North Atlantic Oscillation (NAO) anomaly during the post-eruption winter after the eruptions plays a key role in amplifying the TP cooling through atmospheric teleconnection, which overwhelms the warming response associated with the frequently occurring El Niños. The results from this study provide a perspective on the potential contribution of volcanic activity or stratospheric sulfur injection scenarios to specific TP cooling.

Funder

National Natural Science Foundation of China

Second Tibetan Plateau Scientific Expedition and Research Program

Project supported by Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3