Historical footprints and future projections of global dust burden from bias-corrected CMIP6 models

Author:

Liu Jun,Wang Xiaofan,Wu DongyouORCID,Wei Hailun,Li Yu,Ji Mingxia

Abstract

AbstractDust aerosols significantly affect the Earth’s climate, not only as a source of radiation, but also as ice nuclei, cloud condensation nuclei and thus affect CO2 exchange between the atmosphere and the ocean. However, there are large deviations in dust model simulations due to limited observations on a global scale. Based on ten initial Climate Models Intercomparison Project Phase Six (CMIP6) models, the multi-model ensemble (MME) approximately underestimates future changes in global dust mass loading (DML) by 7–21%, under four scenarios of shared socioeconomic pathways (SSPs). Therefore, this study primarily constrains the CMIP6 simulations under various emission scenarios by applying an equidistant cumulative distribution function (EDCDF) method combined with the Modern-Era Retrospective Analysis for Research and Applications version 2 (MERRA2) datasets based on observation assimilation. We find that the results (19.0–26.1 Tg) for 2000–2014 are closer to MERRA2 (20.0–24.8 Tg) than the initial simulations (4.4–37.5 Tg), with model deviation reduced by up to 75.6%. We emphasize that the DML during 2081–2100 is expected to increase significantly by 0.023 g m–2 in North Africa and the Atlantic region, while decreasing by 0.006 g m–2 in the Middle East and East Asia. In comparison with internal variability and scenario uncertainty, model uncertainty accounts for more than 70% of total uncertainty. When bias correction is applied, model uncertainty significantly decreases by 65% to 90%, resulting in a similar variance contribution to internal variability.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3