A global perspective on western Mediterranean precipitation extremes

Author:

Insua-Costa DamiánORCID,Senande-Rivera MartínORCID,Llasat María CarmenORCID,Miguez-Macho GonzaloORCID

Abstract

AbstractThe Mediterranean region has been declared a climate change hotspot due, among other reasons, to an expected increase in the torrential rains that frequently affect this densely populated area. However, the extent to which these torrential rains are connected to other regions outside the Mediterranean remains uncertain. Here we simulate 160 extreme precipitation events with an atmospheric model enabled for state-of-the-art moisture tracking and demonstrate that large scale moisture transport is a more important factor than evaporation over local sources. We find that the average precipitation fraction with source in the Mediterranean is only 35%, while 10% is from evapotranspiration over nearby land in continental Europe and 25% originates in the North Atlantic. The remaining 30% comes from several more distant source regions, sometimes as remote as the tropical Pacific or the Southern Hemisphere, indicating direct connections with multiple locations on the planet and a global scale energy redistribution. Our results point to the importance of approaching these extreme episodes from a more global rather than purely regional perspective, especially when attempting to attribute them to climate change.

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science,Environmental Chemistry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3