Atlantic-Pacific influence on western U.S. hydroclimate and water resources

Author:

Stone Luke,Strong CourtenayORCID,Bai Husile,Reichler ThomasORCID,McCabe Greg,Brooks Paul D.

Abstract

AbstractThe El Niño Southern Oscillation (ENSO) in the tropical Pacific Ocean is an important driver of winter precipitation variability over western North America as a whole, but ENSO exhibits a weak and inconsistent relationship with precipitation in several critically important headwaters including the upper Colorado River Basin. We present interactions between North Atlantic sea surface temperatures (SSTs) and ENSO that influence western U.S. precipitation, accounting for substantial variability in areas where ENSO alone yields limited guidance. Specifically, we performed a statistical analysis on hemispheric SSTs and western U.S. winter precipitation in a century of observations and a 10,000-year perpetual current-climate simulation. In both frameworks, the leading coupled pattern is ENSO, and the second pattern links an Atlantic Quadpole Mode (AQM) of SST variability to precipitation anomalies over most of the western U.S., including the transition zone where ENSO provides little predictability. The AQM SST anomalies are expansive in latitude, but its primary mechanism appears to involve a strengthening/shifting of the intertropical convergence zone (ITCZ) over northern South America and the tropical Atlantic. The ENSO pattern accounts for a larger fraction of the total covariance between SSTs and precipitation (65% versus 12% for the AQM pattern), but the percent anomalies of precipitation associated with ENSO and the AQM are comparable in magnitude, meaning 20% or larger over much of the western U.S. The interaction between ENSO and AQM influences precipitation across the western U.S., with cold AQM generally reducing precipitation irrespective of ENSO whereas warm AQM increases the amount of precipitation and the area of influence of ENSO; knowledge of these interactions can increase predictability of western U.S. precipitation.

Funder

United States Department of Commerce | NOAA | Climate Program Office

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science,Environmental Chemistry,Global and Planetary Change

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3