Projected increase in summer heat-dome-like stationary waves over Northwestern North America

Author:

Chen ZimingORCID,Lu JianORCID,Chang Chuan-ChiehORCID,Lubis Sandro W.,Leung L. RubyORCID

Abstract

AbstractHeat-dome-like stationary waves often lead to extreme heat events, such as the unprecedented heatwave in Northwestern North America during the summer of 2021. However, future changes in summer stationary waves over Northwestern North America and the underlying driving factors remain unclear. Here, we investigate the projected changes in the anticyclonic stationary wave circulation over Northwestern North America using data from the Coupled Model Intercomparison Project Phase 6 and diagnose the circulation changes using a stationary wave model. Our findings reveal a significant 95% increase in the summer stationary wave amplitude over Northwestern North America under the high-emission scenario in 2080–2099 relative to 1995–2014. The response is mainly driven by the diabatic heating changes over the tropical Pacific which induce a Rossby wave source in the northeastern tropical Pacific, and further supported by a northward expanded waveguide in North America, both enhancing wave activity flux into the Northwestern North America. The heat-dome-like stationary wave anomaly is expected to heighten the heatwave risk over the region.

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science,Environmental Chemistry,Global and Planetary Change

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3